No effect of 85 mT permanent magnets on laser-Doppler measured blood flow response to inspiratory gasps.

نویسندگان

  • Harvey N Mayrovitz
  • Edye E Groseclose
  • David King
چکیده

Although no effects of permanent magnets on resting skin blood flow (SBF) in humans have yet been demonstrated, the possibility that magnet related effects might modify dynamic SBF changes has not been previously studied. We hypothesized that magnets may alter local neurovascular mechanisms to cause changes in normal SBF vasoactive responses. To test this, we studied the effects of a magnet on SBF reductions induced by sympathetic reflexes associated with deep inspirations. SBF was continuously monitored by a dual channel laser-Doppler flowmeter with probes on the middle finger dorsum of both hands of 24 healthy subjects. In the first of two successive intervals, each of the fingers rested on sham ceramic magnets (control interval). Subsequently, one finger rested on an active magnet and the other finger on a sham (experimental interval). Skin temperatures were also measured. The magnet was a 37 mm diameter x 14 mm thick ceramic magnet with a surface field strength of 85 mT measured in the geometrical center of the magnet. Field strength at the finger dorsum, 13 mm above magnet, was 31.5 mT. During each interval, three deep breaths were used to elicit SBF reductions. Responses were calculated as the percent reduction in SBF from its prior 20 s average. Breaths in each interval were spaced 3 min apart to permit full recovery between responses. The experimental interval started after an active magnet was in place for 20 min. Results showed no significant difference in either vasoconstrictive responses or skin temperature due to the magnet. We conclude that magnets of the type, strength and duration used, have no significant effect on vasoconstrictive processes associated with this sympathetic reflex in this group of healthy subjects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reversible Inactivation and Excitation of Nucleus Raphe Magnus Can Modulate Tail Blood Flow of Male Wistar Rats in Response to Hypothermia

Background: The nucleus raphe magnus (NRM) is involved in thermoregulatory processing. There is a correlation between changes in the firing rates of the cells in the NRM and the application of the peripheral thermal stimulus. Introduction: we examined the effect of reversible inactivation and excitation of NRM on mechanisms involved in tail blood flow (TBF) regulation in hypothermia. Methods: H...

متن کامل

Evaluation of Carpal Tunnel Syndrome by Laser Doppler Flowmetry

Background:Autonomic disturbance can leads to blood flow changes that can be studied by various methods. Objective: To assess the blood flow changes in patients with severe carpal tunnel syndrome  by laser Doppler flowmetry Methods:Ten patients with severe unilateral carpal tunnel syndrome confirmed by electrodiagnostic examination enrolled in this study. Patients comprised one man and nine wom...

متن کامل

Inspiration-induced vasoconstrictive responses in dominant versus non-dominant hands.

Single rapid and deep inspirations (inspiratory gasps, IG) result in arteriolar vasoconstriction with concomitant transient decreases in skin blood flow that are most prominent in fingers and toes. Vascular responses (inspiratory gasp responses, IGR) are determined as the maximum percentage reduction in blood flow and have been used to assess sympathetic neurovascular function in several condit...

متن کامل

Tissue blood flow measurement by laser Doppler technique

  Measurement of blood flow and the effects of different factors on tissue blood flow are important fields of research in physiology and pharmacology. So far, different methods have been innovated, using laser light is the Last one. In this article history, principles and specifications of laser technique along with its advantages and disadvantages ( in comparison with other methods) are revie...

متن کامل

Nitric oxide in the nucleus raphe magnus modulates cutaneous blood flow in rats during hypothermia

Objective(s): Nucleus Raphe Magnus (NRM) that is involved in the regulation of body temperature contains nitric oxide (NO) synthase. Considering the effect of NO on skin blood flow control, in this study, we assessed its thermoregulatory role within the raphe magnus. Materials and Methods: To this end, tail blood flow of male Wistar rats was measured by laser doppler following the induction of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioelectromagnetics

دوره 26 4  شماره 

صفحات  -

تاریخ انتشار 2005